Course description

2.2 Review of elastic properties of solids:


Elasticity: It is a property of a matter for which a material body able to regain its initial state of condition on removal of the external forces that applied on it.


Perfectly elastic body: The body that can regain its original state completely on the removal of the force (Figs 7 a, b).


Perfectly plastic body: The body that shows no tendency to regain its original condition on the removal of the deforming force (Fig. 7 c).


                






(a)                                                                    (b)                                                         (c)


                                                    Fig. 7


Load: Load = External force + Own weight along the force (Fig. 8).







                          (a)



(b)





                                                   Fig. 8





Stress:


In the elastic limit,


i) Stress = force applied/ area = F/A (if F is applied uniformly)


When the deforming force F be inclined to the surface then: (Fig. 9 a)


ii) Tangential  (shearing stress) = Fcosφ/A  (Fig. 9 b).


iii) Normal stress  (tensile stress) = Fsinφ/A  (Fig. 9 b).


Strain: Under a stress a body undergoes a deformation in respect of length or volume or shape. The change in the dimension is described by the quantity strain.


 i) Longitudinal or tensile strain = change in length/ original length = δl/L (Fig. 10 a).


ii) Volume strain = change in volume/ original volume = δv/V (Fig. 10 b).


iii) Shearing strain, θ = tanθ (Fig. 10 c).


       








(a)                                       (b)                                             (c)


                                                               Fig. 10


Hooke’s law (fundamental law of elasticity):


Within the elastic limit the stress is proportional to strain (Fig. 11). Therefore, stress/strain = constant (E). This constant is called modulus of elasticity.






Fig. 11


 


Stress-strain diagram of a material:



OA: The wire is perfectly elastic.


AB: Stress and strain are not proportional. But OB region still exhibits elastic behavior.


Beyond B: From D the wire does not come back to its original length at O but come to the position at C.






Fig. 12


Three types of elasticity:








      (a)                                         (b)                                                    (c)


                                                                                Fig. 13


 


If tan θ = θ = l/L then µ =(F/A)/(l/L)=FL/AI  same as the Young’s modulus. But the difference that, in the case of modulus of rigidity, F is the tangential stress not a linear one, and the displacement l take place at right angles to L, not along it.


 


Poisson’s ratio: The idea is that on being stretched, a wire becomes longer but thinner.




From Fig. 14:


σ =(∆D/D)/(∆l/l)


Lateral and linear (or tangential) strains per unit stress are denoted by β and α respectively then σ = β/α.    



 


Fig. 14


 


Problem 1: A wire of 2 meters long and 0.5 mm in diameter and a mass of 10 kg is suspended. It is stretched by 2.33 mm. Find out the value of the Young’s modulus of the wire.






 


Soln.: Let  be the length of the wire that can hang vertically without breaking.


If A is the area of cross-section and ρ is the density of the material of the wire,


then the mass of the wire = volume × density =  A ρ


Breaking stress = F/A = mg/A =  1A ρ g /A =  1  ρ g =  7.9 × 〖10〗^8


or,  


What will i learn?

Requirements

lrc bd

Free

Lectures

0

Skill level

Beginner

Expiry period

Lifetime

Related courses